Abstract
AbstractWe present fourth-order conservative non-splitting semi-Lagrangian (SL) Hermite essentially non-oscillatory (HWENO) schemes for linear transport equations with applications for nonlinear problems including the Vlasov–Poisson system, the guiding center Vlasov model, and the incompressible Euler equations in the vorticity-stream function formulation. The proposed SL HWENO schemes combine a weak formulation of the characteristic Galerkin method with two newly constructed HWENO reconstruction methods. The new HWENO reconstructions are meticulously designed to strike a delicate balance between curbing numerical oscillation and introducing excessive dissipation. Mass conservation naturally holds due to the weak formulation of the semi-Lagrangian discontinuous Galerkin method and the design of the HWENO reconstructions. We apply a positivity-preserving limiter to maintain the positivity of numerical solutions when needed. Abundant benchmark tests are performed to verify the effectiveness of the proposed SL HWENO schemes.
Funder
National Key R &D Program of China
National Natural Science Foundation of China
National Natural Science Foundation
Guangdong Provincial Key Laboratory of Interdisciplinary Research and Application for Data Science
Guangdong Higher Education Upgrading Plan
National Science Foundation
Air Force Office of Scientific Research
Publisher
Springer Science and Business Media LLC
Reference42 articles.
1. Balsara, D.S., Garain, S., Shu, C.-W.: An efficient class of WENO schemes with adaptive order. J. Comput. Phys. 326, 780–804 (2016)
2. Borges, R., Carmona, M., Costa, B., Don, W.S.: An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. J. Comput. Phys. 227(6), 3191–3211 (2008)
3. Cai, X., Boscarino, S., Qiu, J.-M.: High order semi-Lagrangian discontinuous Galerkin method coupled with Runge-Kutta exponential integrators for nonlinear Vlasov dynamics. J. Comput. Phys. 427, 110036 (2021)
4. Cai, X., Guo, W., Qiu, J.-M.: A high order conservative semi-Lagrangian discontinuous Galerkin method for two-dimensional transport simulations. J. Sci. Comput. 73(2–3), 514–542 (2017)
5. Cai, X., Guo, W., Qiu, J.-M.: A high order semi-Lagrangian discontinuous Galerkin method for Vlasov-Poisson simulations without operator splitting. J. Comput. Phys. 354, 529–551 (2018)