On the Impact of a Dry Intrusion Driving Cloud-Regime Transitions in a Midlatitude Cold-Air Outbreak

Author:

Tornow Florian12ORCID,Ackerman Andrew S.2,Fridlind Ann M.2,Tselioudis George2,Cairns Brian2,Painemal David34,Elsaesser Gregory52

Affiliation:

1. a Earth Institute, Columbia University, Palisades, New York

2. b NASA Goddard Institute for Space Studies, New York, New York

3. c NASA Langley Research Center, Hampton, Virginia

4. d Science Systems and Applications, Inc., Hampton, Virginia

5. e Department of Applied Physics and Applied Mathematics, Columbia University, Palisades, New York

Abstract

Abstract Marine cold-air outbreaks (CAOs) occur in the postfrontal sector of midlatitude storms, usually accompanied by dry intrusions (DIs) shaping the free-tropospheric (FT) air aloft. Substantial rain initiates overcast to broken regime transitions in marine boundary layer (MBL) cloud decks that form where cold air first meets relatively high sea surface temperatures. An exemplary CAO in the northwest Atlantic shows earlier transitions (corresponding to reduced extents of overcast clouds) closer to the low pressure center. We hypothesize that gradients in the meteorological pattern imposed by the prevailing DI induced a variability in substantial rain onset and thereby transition. We compile satellite observations, reanalysis fields, and Lagrangian large-eddy simulations (LES) translating along MBL trajectories to show that postfrontal trajectories closer to the low pressure center are more favorable to rain formation (and thereby cloud transitions) because of 1) weaker FT subsidence rates, 2) greater FT humidity, 3) stronger MBL winds, and 4) a colder MBL with reduced lower-tropospheric stability. LES confirms the observed variability in transitions, with substantial rain appearing earlier where there is swifter reduction of cloud condensation nucleus (CCN) concentration and increase of liquid water path (LWP). Prior to substantial rain, CCN budgets indicate dominant loss terms from FT entrainment and hydrometeor collisions. LWP-enhancing cloud thickness increases more rapidly for weaker large-scale subsidence that enables faster MBL deepening. Mere MBL warming and moistening cannot explain cloud thickness increases. The generality of such a DI-imposed cloud transition pattern merits further investigation with more cases that may additionally be convoluted by onshore aerosol gradients. Significance Statement Cold-air outbreaks (CAOs) lead to marine boundary layer (MBL) clouds that commonly undergo rain-initiated overcast to broken cloud regime transitions that can drastically impact reflected solar radiation. We aim to better understand what mechanisms control these transitions. For a CAO event in the northwest Atlantic that shows earlier transitions closer to the low pressure center, we find the transition timing to be largely governed by the coinciding dry intrusion that imposes an inhomogeneous large-scale meteorological pattern onto the overlying free troposphere and thereby affects MBL rain formation. Our findings update conceptual understanding of extratropical cyclones and motivate analyzing observations and conducting simulations for more postfrontal cases through a Lagrangian perspective as done here for one case, to assess the generality of our findings.

Funder

Science Mission Directorate

Earth Sciences Division

National Aeronautics and Space Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference63 articles.

1. The role of precipitation in controlling the transition from stratocumulus to cumulus clouds in a Northern Hemisphere cold-air outbreak;Abel, S. J.,2017

2. Mesoscale shallow convection in the atmosphere;Atkinson, B. W.,1996

3. Large contribution of supercooled liquid clouds to the solar radiation budget of the Southern Ocean;Bodas-Salcedo, A.,2016

4. Mechanisms of marine low cloud sensitivity to idealized climate perturbations: A single-LES exploration extending the CGILS cases;Bretherton, C. S.,2013

5. The dry intrusion perspective of extra-tropical cyclone development;Browning, K. A.,1997

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3