On the Physics of High CAPE

Author:

Emanuel Kerry1ORCID

Affiliation:

1. a Lorenz Center, Massachusetts Institute of Technology, Cambridge, Massachusetts

Abstract

Abstract Large values of convective available potential energy (CAPE) are an important ingredient for many severe convective storms, yet there has been comparatively little research on how, physically, such large values arise or why they take on the observed values and climatology. Here we build on recently published observational and theoretical work to construct a simple, one-dimensional coupled soil–atmosphere model of preconvective boundary layer growth, driven by a single diurnal cycle of prescribed net surface radiation. Based on this model and previously published research, we suggest that high CAPE (>∼1000 J kg−1) results when air masses that have been significantly modified by passage over dry, lightly vegetated soils are advected over moist and/or moderately vegetated soils and then exposed to surface solar heating. Several diurnal cycles may be needed to raise the moist static energy of the boundary layer to levels consistent with high CAPE. The production of CAPE and erosion of convective inhibition (CIN) are strongly affected by the potential temperature of the desert-modified air mass, the level of near-surface soil moisture (and root-zone soil moisture if significant vegetation is present), the type of soil, and the characteristics of the vegetation. Consequently, CAPE production and severe convective weather may be significantly affected by regional-scale land-use changes and by climate change. Significance Statement The energy available for severe convective storms depends strongly on the properties of the underlying soil and vegetation and the temperature of air masses formed over dry terrain upstream. This implies that the severity of convective storms can be strongly affected by changes in land use and by climate change.

Funder

Schmidt Futures Virtual Earth System Research Institute

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference48 articles.

1. Clausius–Clapeyron scaling of peak CAPE in continental convective storm environments;Agard, V.,2017

2. The future of supercells in the United States;Ashley, W. S.,2023

3. A numerical sensitivity study on the impact of soil moisture on convection-related parameters and convective precipitation over complex terrain;Barthlott, C.,2011

4. The land surface-atmosphere interaction: A review based on observational and global modeling perspectives;Betts, A. K.,1996

5. Biases in CMIP6 historical U.S. severe convective storm environments driven by biases in mean-state near-surface moist static energy;Chavas, D. R.,2022

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3