Linear Rainfall Features and Their Association with Rainfall Extremes near Melbourne, Australia

Author:

Hitchcock Stacey M.12ORCID,Lane Todd P.12,Warren Robert A.23,Soderholm Joshua S.42

Affiliation:

1. a School of Geography, Earth and Atmospheric Sciences, The University of Melbourne, Melbourne, Victoria, Australia

2. b ARC Centre of Excellence for Climate Extremes, Melbourne, Victoria, Australia

3. c School of Earth, Atmosphere and Environment, Monash University, Melbourne, Victoria, Australia

4. d Australian Bureau of Meteorology, Melbourne, Victoria, Australia

Abstract

AbstractLinear precipitation systems are a prominent contributor to rainfall over Melbourne, Australia, and the surrounding region. These systems are often convective in nature, frequently associated with cold fronts, and in some cases can lead to significant rainfall and flash flooding. Various types of linearly organized systems (e.g., squall lines, quasi-linear convective systems) have been the subject of much research in the United States and elsewhere, but thus far relatively little analysis has been done on linear systems in Australia. To begin to understand rainfall extremes and how they may change in this region in the future, it is useful to explore the contribution of these types of systems and the characteristics that define them. To this end, we have examined the recently developed Australian Radar Archive (AURA), identifying objects that meet a specific set of relevant criteria, and used multiple methods to identify heavy and extreme daily rainfall. We found that on average, days with linear systems contribute over half of the total rainfall and 70%–85% of heavy/extreme rainfall in the Melbourne region. The linear systems that occur on heavy rainfall days tend to be larger, slower-moving, and longer-lived, while those on extreme rainfall days also tend to be more intense and have a greater degree of southward propagation than linear systems on other days.

Funder

Centre of Excellence for Climate Extremes

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3