Calibrating Ground-Based Radars against TRMM and GPM

Author:

Warren Robert A.1,Protat Alain2,Siems Steven T.3,Ramsay Hamish A.3,Louf Valentin1,Manton Michael J.1,Kane Thomas A.2

Affiliation:

1. School of Earth, Atmosphere and Environment, Monash University, Clayton, Victoria, Australia

2. Bureau of Meteorology, Melbourne, Victoria, Australia

3. Australian Research Council Centre of Excellence for Climate System Science, and School of Earth, Atmosphere and Environment, Monash University, Clayton, Victoria, Australia

Abstract

AbstractCalibration error represents a significant source of uncertainty in quantitative applications of ground-based radar (GR) reflectivity data. Correcting it requires knowledge of the true reflectivity at well-defined locations and times during a volume scan. Previous work has demonstrated that observations from certain spaceborne radar (SR) platforms may be suitable for this purpose. Specifically, the Ku-band precipitation radars on board the Tropical Rainfall Measuring Mission (TRMM) satellite and its successor, the Global Precipitation Measurement (GPM) mission Core Observatory satellite together provide nearly two decades of well-calibrated reflectivity measurements over low-latitude regions (±35°). However, when comparing SR and GR reflectivities, great care must be taken to account for differences in instrument sensitivity and frequency, and to ensure that the observations are spatially and temporally coincident. Here, a volume-matching method, developed as part of the ground validation network for GPM, is adapted and used to quantify historical calibration errors for three S-band radars in the vicinity of Sydney, Australia. Volume-matched GR–SR sample pairs are identified over a 7-yr period and carefully filtered to isolate reflectivity differences associated with GR calibration error. These are then used in combination with radar engineering work records to derive a piecewise-constant time series of calibration error for each site. The efficacy of this approach is verified through comparisons between GR reflectivities in regions of overlapping coverage, with improved agreement when the estimated errors are removed.

Funder

Australian Research Council

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3