Development of New Observation Operators for Assimilating GOES-R Geostationary Lightning Mapper Flash Extent Density Data Using GSI EnKF: Tests with Two Convective Events over the United States

Author:

Kong Rong1,Xue Ming12,Liu Chengsi1,Fierro Alexandre O.345,Mansell Edward R.4

Affiliation:

1. a Center for Analysis and Prediction of Storms, Norman, Oklahoma

2. b University of Oklahoma, Norman, Oklahoma

3. c Cooperative Institute for Mesoscale Meteorological Studies, Norman, Oklahoma

4. d NOAA/National Severe Storms Laboratory, Norman, Oklahoma

5. e Department of Forecasting Models, Zentralanstalt für Meteorologie und Geodynamik (ZAMG), Vienna, Austria

Abstract

Abstract In a prior study, GOES-R Geostationary Lightning Mapper (GLM) flash extent density (FED) data were assimilated using ensemble Kalman filter into a convection-allowing model for a mesoscale convective system (MCS) and a supercell storm. The FED observation operator based on a linear relation with column graupel mass was tuned by multiplying a factor to avoid large FED forecast bias. In this study, new observation operators are developed by fitting a third-order polynomial to GLM FED observations and the corresponding FED forecasts of graupel mass of the MCS and/or supercell cases. The new operators are used to assimilate the FED data for both cases, in three sets of experiments called MCSFit, SupercellFit, and CombinedFit, and their performances are compared with the prior results using the linear operator and with a reference simulation assimilating no FED data. The new nonlinear operators reduce the frequency biases (root-mean-square innovations) in the 0–4-h forecasts of the FED (radar reflectivity) relative to the results using the linear operator for both storm cases. The operator obtained by fitting data from the same case performs slightly better than fitting to data from the other case, while the operator obtained by fitting forecasts of both cases produce intermediate but still very similar results, and the latter is considered more general. In practice, a more general operator can be developed by fitting data from more cases. Significance Statement Prior studies found that assimilation of satellite lightning observation can benefit storm forecasts for up to 4 h. A linear lightning observation operator originally developed for assimilating pseudo-satellite lightning observations was tuned earlier through sensitivity experiments when assimilating real lightning data. However, the linear relation does not fit the model and observational data well and significant bias can exist. This study develops new lightning observation operators by fitting a high-order polynomial to satellite lightning observations and model-predicted quantities that directly relate to lightning. The new operator was found to reduce the frequency biases and root-mean-square innovations for lightning and radar reflectivity forecasts, respectively, up to several hours relative to the linear operator. The methodology can be applied to larger data samples to obtain a more general operator for use in operational data assimilation systems.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3