Evaluation of Independent Stochastically Perturbed Parameterization Tendency (iSPPT) Scheme on HWRF-Based Ensemble Tropical Cyclone Intensity Forecasts

Author:

Zhao Xiaohui1,Torn Ryan D.1

Affiliation:

1. a Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York

Abstract

Abstract Tropical cyclone (TC) intensity has been shown to have limited predictability in numerical weather prediction models; therefore, ensemble forecasting may be critical. An ensemble prediction system (EPS) should ideally cover all sources of uncertainty; however, most meso- and convective-scale EPSs typically consider initial-condition uncertainty alone, with limited treatment of model uncertainty, even though the evolution of mesoscale features is highly dependent on uncertain parameterization schemes. The role of stochastic treatment of model error in the Hurricane Weather Research and Forecasting (HWRF) EPS is evaluated by applying independent stochastically perturbed parameterization (iSPPT) scheme to individual parameterization schemes for four TCs from 2017 to 2018. Experiments with Hurricane Irma (2017) indicate that TC intensity ensemble standard deviation is most sensitive to the amplitude of the stochastic perturbation field, with smaller impact from adjusting the decorrelation time scale and spatial length scale. Results from all four TC cases show that stochastic perturbations to the turbulent mixing scheme can increase the ensemble standard deviation in intensity metrics over a 72-h simulation without introducing significant differences in mean error or bias. By contrast, stochastic perturbations to the microphysics, radiation, and cumulus tendencies have negligible effects on intensity standard deviation.

Funder

NOAA/HFIP

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3