Using a Cost-Effective Approach to Increase Background Ensemble Member Size within the GSI-Based EnVar System for Improved Radar Analyses and Forecasts of Convective Systems

Author:

Gasperoni Nicholas A.1,Wang Xuguang1,Wang Yongming1

Affiliation:

1. a School of Meteorology, University of Oklahoma, Norman, Oklahoma

Abstract

Abstract A valid time shifting (VTS) method is explored for the GSI-based ensemble variational (EnVar) system modified to directly assimilate radar reflectivity at convective scales. VTS is a cost-efficient method to increase ensemble size by including subensembles before and after the central analysis time. Additionally, VTS addresses common time and phase model error uncertainties within the ensemble. VTS is examined here for assimilating radar reflectivity in a continuous hourly analysis system for a case study of 1–2 May 2019. The VTS implementation is compared against a 36-member control experiment (ENS-36), to increase ensemble size (3 × 36 VTS), and as a cost-savings method (3 × 12 VTS), with time-shifting intervals τ between 15 and 120 min. The 3 × 36 VTS experiments increased the ensemble spread, with largest subjective benefits in early cycle analyses during convective development. The 3 × 12 VTS experiments captured analysis with similar accuracy as ENS-36 by the third hourly analysis. Control forecasts launched from hourly EnVar analyses show significant skill increases in 1-h precipitation over ENS-36 out to hour 12 for 3 × 36 VTS experiments, subjectively attributable to more accurate placement of the convective line. For 3 × 12 VTS, experiments with τ ≥ 60 min met and exceeded the skill of ENS-36 out to forecast hour 15, with VTS-3 × 12τ90 maximizing skill. Sensitivity results demonstrate preference to τ = 30–60 min for 3 × 36 VTS and 60–120 min for 3 × 12 VTS. The best 3 × 36 VTS experiments add a computational cost of 45%–67%, compared to the near tripling of costs when directly increasing ensemble size, while best 3 × 12 VTS experiments save about 24%–41% costs over ENS-36. Significance Statement The purpose of this work is to study a valid time shifting method to improve the prediction of severe convective storm systems over the continental United States. This method improves ensemble-based radar reflectivity analyses by including ensemble member information at times before and after the analysis time, thereby increasing the ensemble size at just a fractional added computational cost. The results show the method can boost the accuracy of high-resolution convection prediction out to at least 12 h. This case study motivates future systematic testing in a real-time setting and potential implementation to enhance the U.S. operational ensemble-based convection-allowing forecast model and data assimilation system.

Funder

national oceanic and atmospheric administration

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3