Using Explainable Machine Learning Forecasts to Discover Subseasonal Drivers of High Summer Temperatures in Western and Central Europe

Author:

van Straaten Chiem12ORCID,Whan Kirien1,Coumou Dim231,van den Hurk Bart4,Schmeits Maurice12

Affiliation:

1. a Royal Netherlands Meteorological Institute (KNMI), De Bilt, Netherlands

2. b Institute for Environmental Studies (IVM), Vrije Universiteit Amsterdam, Amsterdam, Netherlands

3. c Potsdam Institute for Climate Impact Research, Postdam, Germany

4. d Deltares, Delft, Netherlands

Abstract

Abstract Reliable subseasonal forecasts of high summer temperatures would be very valuable for society. Although state-of-the-art numerical weather prediction (NWP) models have become much better in representing the relevant sources of predictability like land and sea surface states, the subseasonal potential is not fully realized. Complexities arise because drivers depend on the state of other drivers and on interactions over multiple time scales. This study applies statistical modeling to ERA5 data, and explores how nine potential drivers, interacting on eight time scales, contribute to the subseasonal predictability of high summer temperatures in western and central Europe. Features and target temperatures are extracted with two variations of hierarchical clustering, and are fitted with a machine learning (ML) model based on random forests. Explainable AI methods show that the ML model agrees with physical understanding. Verification of the forecasts reveals that a large part of predictability comes from climate change, but that reliable and valuable subseasonal forecasts are possible in certain windows, like forecasting monthly warm anomalies with a lead time of 15 days. Contributions of each driver confirm that there is a transfer of predictability from the land and sea surface state to the atmosphere. The involved time scales depend on lead time and the forecast target. The explainable AI methods also reveal surprising driving features in sea surface temperature and 850 hPa temperature, and rank the contribution of snow cover above that of sea ice. Overall, this study demonstrates that complex statistical models, when made explainable, can complement research with NWP models, by diagnosing drivers that need further understanding and a correct numerical representation, for better future forecasts.

Funder

nederlandse organisatie voor wetenschappelijk onderzoek

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3