Cool-Season Evaluation of FV3-LAM-Based CONUS-Scale Forecasts with Physics Configurations of Experimental RRFS Ensembles

Author:

Supinie Timothy A.1,Park Jun1,Snook Nathan1,Hu Xiao-Ming1,Brewster Keith A.1,Xue Ming12,Carley Jacob R.3

Affiliation:

1. a Center for Analysis and Prediction of Storms, Norman, Oklahoma

2. b School of Meteorology, University of Oklahoma, Norman, Oklahoma

3. c NOAA/NWS/NCEP/Environmental Modeling Center, College Park, Maryland

Abstract

Abstract To help inform physics configuration decisions and help design and optimize a multi-physics Rapid Refresh Forecasting System (RRFS) ensemble to be used operationally by the National Weather Service, five FV3-LAM-based convection allowing forecasts were run on 35 cases between October 2020 and March 2021. These forecasts used ∼3-km grid spacing on a CONUS domain with physics configurations including Thompson, NSSL, and Ferrier–Aligo microphysics schemes, Noah, RUC, and NoahMP land surface models, and MYNN-EDMF, K-EDMF, and TKE-EDMF PBL schemes. All forecasts were initialized from the 0000 UTC GFS analysis and run for 84 h. Also, a subset of 8 cases were run with 15 combinations of physics options, also including the Morrison–Gettelman microphysics and Shin–Hong PBL schemes, to help attribute behaviors to individual schemes and isolate the main contributors of forecast errors. Evaluations of both sets of forecasts find that the CONUS-wide 24-h precipitation > 1 mm is positively biased across all five forecasts. NSSL microphysics displays a low bias in QPF along the Gulf Coast. Analyses show that it produces smaller raindrops prone to evaporation. Additionally, TKE-EDMF PBL in combination with Thompson microphysics displays a positive bias in precipitation over the Great Lakes and in the ocean near Florida due to higher latent heat fluxes calculated over water. Furthermore, the K-EDMF PBL scheme produces temperature errors that result in a negative bias in snowfall over the southern Mountain West. Finally, recommendations for which physics schemes to use in future suites and the RRFS ensemble are discussed.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3