Assimilation of FY-3D and FY-3E Hyperspectral Infrared Atmospheric Sounding Observation and Its Impact on Numerical Weather Prediction during Spring Season over the Continental United States

Author:

Zhang Qi12ORCID,Shao Min3ORCID

Affiliation:

1. Meteomatics AG, Unterstrasse 12, 9000 St. Gallen, Switzerland

2. Space Science and Engineering Center, University of Wisconsin-Madison, Madison, WI 53706, USA

3. School of Environment, Nanjing Normal University, Nanjing 210098, China

Abstract

As a part of the World Meteorological Organization (WMO) Global Observing System, HIRAS-1 and HIRAS-2’s observations’ impact on improving the accuracy of numerical weather prediction (NWP) can be summarized into two questions: (1) Will HIRAS observation help the NWP system to improve its accuracy? (2) Which instrument has the greater impact on NWP? To answer the questions, four experiments are designed here: (I) the HIRAS-1 experiment, which assimilates the principal component (PC) scores derived from HIRAS-1 radiance observation from the FY-3D satellite; (II) the HIRAS-2 experiment, which assimilates HIRAS-2 (onboard the FY-3E satellite) radiance-observation-derived PC scores; (III) the J-01 experiment, which assimilates JPSS1 CrIS radiance-observation-derived PC scores; (IV) the control experiment. Each experiment generated a series of forecasts with 24 h lead-time from 16 March 2022 to 12 April 2022 using the Unified Forecast System Short-Range Weather application. Forecast evaluation using radiosonde and aircraft observation reveals: (a) for upper-level variables (i.e., temperature and specific humidity), assimilating HIRAS observation can improve the NWP’s performance by decreasing the standard deviation (Stdev) and increasing the anomaly correlation coefficient (ACC); (b) according to the multi-category Heidke skill score, HIRAS assimilation experiments, especially the HIRAS-2 experiment, have a higher agreement with hourly precipitation observations; (c) based on two tornado-outbreak case studies, which occurred on 30 March 2022 and 5 April 2022, HIRAS observation can increase the predicted intensity of 0–1 km storm relative helicity and decrease the height of the lifted condensation level at tornado outbreak locations; and (d) compared to CrIS, HIRAS-2 still has room for improvement.

Funder

Special Science and Technology Innovation Program for Carbon Peak and Carbon Neutralization of Jiangsu Province

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3