Polarimetric Estimates of a 1-Month Accumulation of Light Rain with a 3-cm Wavelength Radar

Author:

Borowska L.1,Zrnić D.2,Ryzhkov A.3,Zhang P.3,Simmer C.1

Affiliation:

1. Meteorological Institute of the University of Bonn, Bonn, Germany

2. NOAA/National Severe Storms Laboratory, Norman, Oklahoma

3. Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Abstract

Abstract The authors evaluate rainfall estimates from the new polarimetric X-band radar at Bonn, Germany, for a period between mid-November and the end of December 2009 by comparison with rain gauges. The emphasis is on slightly more than 1-month accumulations over areas minimally affected by beam blockage. The rain regime was characterized by reflectivities mainly below 45 dBZ, maximum observed rain rates of 47 mm h−1, a mean rain rate of 0.1 mm h−1, and brightband altitudes between 0.6 and 2.4 km above the ground. Both the reflectivity factor and the specific differential phase are used to obtain the rain rates. The accuracy of rain total estimates is evaluated from the statistics of the differences between radar and rain gauge measurements. Polarimetry provides improvement in the statistics of reflectivity-based measurements by reducing the bias and RMS errors from −25% to 7% and from 33% to 17%, respectively. Essential to this improvement is separation of the data into those attributed to pure rain, those from the bright band, and those due to nonmeteorological scatterers. A type-specific (rain or wet snow) relation is applied to obtain the rain rate by matching on the average the contribution by wet snow to the radar-measured rainfall below the bright band. The measurement of rain using specific differential phase is the most robust and can be applied to the very low rain rates and still produce credible accumulation estimates characterized with a standard deviation of 11% but a bias of −25%. A composite estimator is also tested and discussed.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3