Polarimetric Radar Variables in the Layers of Melting and Dendritic Growth at X Band—Implications for a Nowcasting Strategy in Stratiform Rain

Author:

Trömel Silke1,Ryzhkov Alexander V.2,Hickman Brandon1,Mühlbauer Kai1,Simmer Clemens1

Affiliation:

1. Institute for Geosciences and Meteorology, University of Bonn, Bonn, Germany

2. Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Abstract

AbstractTime series of quasi–vertical profiles (QVPs) from 52 stratiform precipitation events observed with the polarimetric X-band radar in Bonn, Germany (BoXPol), between 2013 and 2016 have been statistically analyzed to infer microphysical processes shaping the dendritic-growth-layer (DGL) and melting-layer (ML) signatures including surface rainfall. Specific differential phase KDP in the ML shows an average correlation of 0.65 with surface rainfall for these cases. Radar reflectivity decreases below the ML by about 2 dB on average while differential reflectivity ZDR is hardly affected, which suggests rain evaporation as the dominating effect. Estimated ice water content or snow water equivalent precipitation rate S in the DGL is correlated with surface rain rates with lead times of 30 min and longer, which opens a pathway for radar-based nowcasting of stratiform precipitation tendencies. Trajectories of snow generated aloft down to the surface are constructed from wind profiles derived both from the nearest radiosounding and radar-based velocity azimuth displays (VAD) to narrow down the location at which the DGL-generated snow reaches the surface as rain. The lagged correlation analysis between KDP in the DGL and reflectivity ZH at that location demonstrates the superiority of the VAD information. Correlation coefficients up to 0.80 with lead times up to 120 min provide a proof of concept for future nowcasting applications that are based on DGL monitoring. Statistical relations found in our QVP dataset provide a database for estimating intrinsic polarimetric variables from the usual azimuth and elevation scans within and in the vicinity of the ML.

Funder

NOAA Research

Deutsche Forschungsgemeinschaft

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3