Rainfall Retrieval and Nowcasting Based on Multispectral Satellite Images. Part I: Retrieval Study on Daytime 10-Minute Rain Rate

Author:

Zhuge Xiao-Yong1,Yu Fan1,Zhang Cheng-Wei2

Affiliation:

1. School of Atmospheric Sciences, and Key Laboratory of Mesoscale Severe Weather of Ministry of Education, Nanjing University, Nanjing, China

2. Meteorological Observatory of Shenzhen Air Traffic Management Station of CAAC, Shenzhen, China

Abstract

Abstract This study develops a method for both precipitation area and intensity retrievals based on multispectral geostationary satellite images. This method can be applied to continuous observation of large-scale precipitation so as to solve the problem from the measurements of rainfall radar and rain gauge. Satellite observation is instantaneous, whereas the rain gauge records accumulative data during a time interval. For this reason, collocated 10-min rain gauge measurements and infrared (IR) and visible (VIS) data from the FengYun-2C (FY-2C) geostationary satellite are employed to improve the accuracy of satellite rainfall retrieval. First of all, the rainfall probability identification matrix (RPIM) is used to distinguish rainfall clouds from nonrainfall clouds. This RPIM is more efficient in improving the retrieval accuracy of rainfall area than previous threshold combination screening methods. Second, the multispectral segmented curve-fitting rainfall algorithm (MSCFRA) is proposed and tested to estimate the 10-min rain rates. Rainfall samples taken from June to August 2008 are used to assess the performance of the rainfall algorithm. Assessment results show that the MSCFRA improves the accuracy of rainfall estimation for both stratiform cloud rainfall and convective cloud rainfall. These results are practically consistent with rain gauge measurements in both rainfall area division and rainfall intensity grade estimation. Furthermore, this study demonstrates that the temporal resolution of satellite detection is important and necessary in improving the precision of satellite rainfall retrieval.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3