Using the Gradient Boosting Decision Tree to Improve the Delineation of Hourly Rain Areas during the Summer from Advanced Himawari Imager Data

Author:

Ma Liang1,Zhang Guoping2,Lu Er3

Affiliation:

1. Key Laboratory of Meteorological Disaster, Ministry of Education, and Joint International Research Laboratory of Climate and Environment Change, and Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, and Joint Laboratory of Meteorological Data and Machine Learning, Center for Public Meteorological Service, China Meteorology Administration, Beijing, China

2. Joint Laboratory of Meteorological Data and Machine Learning, Center for Public Meteorological Service, China Meteorology Administration, Beijing, China

3. Key Laboratory of Meteorological Disaster, Ministry of Education, and Joint International Research Laboratory of Climate and Environment Change, and Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China

Abstract

AbstractA new classification scheme based on the gradient boosting decision tree (GBDT) algorithm is developed to improve the accuracy of rain area delineation for daytime, twilight, and nighttime modules using Advanced Himawari Imager on board Himawari-8 (AHI-8) geostationary satellite data and the U.S. Geological Survey digital elevation model data. The GBDT algorithm is able to efficiently manage the nonlinear relationships among high-dimensional data without being affected by overfitting problems. The new delineation module utilizes several features related to the physical variables, including cloud-top heights, cloud-top temperatures, cloud water paths, cloud phases, water vapor, temporal changes, and orographic variations. The scheme procedure is as follows. First, we perform extensive experiments to optimize the module parameters such that the equitable threat score (ETS) reaches its maximum value. Then, the GBDT-based modules are trained and classified with the optimum parameters. Finally, validation datasets are applied to test the true performance of the GBDT-based modules. The agreement between the estimations and observations of the ground-based rain gauges is verified. Results show that the ETS values of the GBDT-based modules are 0.42 for the daytime, 0.30 for the twilight period, and 0.32 for the nighttime. The cloud water path and cloud phase features make the most significant contributions to the modules. Comparisons drawn with the two probability-related methods show that our new scheme presents great advantages in terms of statistical scores on the overall performance.

Funder

the China Special Fund for Meteorological Research in the Public Interest

the National Natural Science Foundation of China

the Priority Academic Program Development of Jiangsu Higher Education Institutions

Science and Technology Bureau of Liaoning Province

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3