Direct Numerical Simulation of Differential Scalar Diffusion in Three-Dimensional Stratified Turbulence

Author:

Gargett Ann E.1,Merryfield William J.2,Holloway Greg3

Affiliation:

1. Center for Coastal Physical Oceanography, Old Dominion University, Norfolk, Virginia

2. Canadian Centre for Climate Modelling and Analysis, Victoria, British Columbia, Canada

3. Institute of Ocean Sciences, Sidney, British Columbia, Canada

Abstract

Abstract The potential for differential turbulent transport of oceanic temperature (T) and salinity (𝒮) is explored using three-dimensional direct numerical simulations of decaying stratified turbulence. The simulations employ a realistic molecular diffusion coefficient for T, and one for a “salt” scalar S that is 10 times smaller. Initially, a uniformly stratified medium is disturbed by a turbulent burst whose initial energy is assigned a range of values. In each instance, transports of T integrated over the subsequent decay of the burst exceed those of S. The more energetic cases occupy parameter ranges similar to, and exhibit spectral characteristics that are essentially indistinguishable from, those of direct observations of turbulence in the stratified ocean interior. In these cases, the turbulent diffusivity of T exceeds that of S by 6%–22%. These simulations underestimate the degree of differential diffusion between T and salinity 𝒮 (which has a molecular diffusivity 100 times less than T); thus at the Reynolds numbers attained by the simulations these results constitute lower bounds for differential diffusion associated with sporadic turbulence in the ocean. The simulation results are consistent with previous laboratory and two-dimensional numerical experiments and suggest that the assumption of equal turbulent diffusivities for T and 𝒮, commonly used in circulation modeling and in interpreting oceanic mixing measurements, should be reconsidered.

Publisher

American Meteorological Society

Subject

Oceanography

Reference51 articles.

1. Small scale variation of convected quantities like temperature in turbulent fluid.;Batchelor;J. Fluid Mech.,1959

2. Differential molecular diffusion effects in turbulent mixing.;Bilger;Combust. Sci. Technol.,1982

3. Direct numerical simulations of passive scalars with Pr > 1 advected by turbulent flows.;Bogucki;J. Fluid Mech.,1997

4. Spectral Methods in Fluid Mechanics.;Canuto,1988

5. Hydrodynamic and Hydromagnetic Stability.;Chandrasekhar,1961

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3