Abstract
Decaying turbulence in a density-stratified fluid with a Prandtl number up to $Pr=70$ is investigated by direct numerical simulation. In turbulent flow with a Prandtl number larger than unity, it is well known that the passive scalar fluctuations cascade to scales smaller than the Kolmogorov scale, and show the $k^{-1}$ spectrum in the viscous–convective range, down to the Batchelor scale. In decaying stratified turbulence, the same phenomenon is initially observed for the buoyant scalar of high $Pr~(=70)$, until the Ozmidov scale becomes small and the buoyancy becomes effective even at the Kolmogorov scale. After that moment, however, the velocity components near the Kolmogorov scale begin to show strong anisotropy dominated by the vertically sheared horizontal flow, which reduces the vertical scale of density fluctuations. An analysis similar to that of Batchelor (J. Fluid Mech., vol. 5, 1959, pp. 113–133) indeed shows that the vertically sheared horizontal flow reduces the vertical scale of density fluctuations, without changing the horizontal scale.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献