Intercalibrated Passive Microwave Rain Products from the Unified Microwave Ocean Retrieval Algorithm (UMORA)

Author:

Hilburn K. A.1,Wentz F. J.1

Affiliation:

1. Remote Sensing Systems, Santa Rosa, California

Abstract

Abstract The Unified Microwave Ocean Retrieval Algorithm (UMORA) simultaneously retrieves sea surface temperature, surface wind speed, columnar water vapor, columnar cloud water, and surface rain rate from a variety of passive microwave radiometers including the Special Sensor Microwave Imager (SSM/I), the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI), and the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E). The rain component of UMORA explicitly parameterizes the three physical processes governing passive microwave rain retrievals: the beamfilling effect, cloud and rainwater partitioning, and effective rain layer thickness. Rain retrievals from the previous version of UMORA disagreed among different sensors and were too high in the tropics. These issues have been fixed with more realistic rain column heights and proper modeling of saturation and footprint-resolution effects in the beamfilling correction. The purpose of this paper is to describe the rain algorithm and its recent improvements and to compare UMORA retrievals with Goddard Profiling Algorithm (GPROF) and Global Precipitation Climatology Project (GPCP) rain rates. On average, TMI retrievals from UMORA agree well with GPROF; however, large differences become apparent when the instantaneous retrievals are compared on a pixel-to-pixel basis. The differences are due to fundamental algorithm differences. For example, UMORA generally retrieves higher total liquid water, but GPROF retrieves a higher surface rain rate for a given amount of total liquid water because of differences in microphysical assumptions. Comparison of UMORA SSM/I retrievals with GPCP shows similar spatial patterns, but GPCP has higher global averages because of greater amounts of precipitation in the extratropics. UMORA and GPCP have similar linear trends over the period 1988–2005 with similar spatial patterns.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference26 articles.

1. The version 2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979–present).;Adler;J. Hydrometeor.,2003

2. Ashcroft, P., and F. J.Wentz, 2000: Algorithm theoretical basis document: AMSR level 2A algorithm. RSS Tech. Rep. 121599B-1, Remote Sensing Systems, 29 pp.

3. Critical assessment of microphysical assumptions within TRMM radiometer rain profile algorithm using satellite, aircraft, and surface datasets from KWAJEX.;Fiorino;J. Appl. Meteor. Climatol.,2006

4. Correcting active scatterometer data for the effects of rain using passive radiometer data.;Hilburn;J. Appl. Meteor. Climatol.,2006

5. Probability and Statistical Inference.;Hogg,1997

Cited by 172 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3