Relative Short-Range Forecast Impact from Aircraft, Profiler, Radiosonde, VAD, GPS-PW, METAR, and Mesonet Observations via the RUC Hourly Assimilation Cycle

Author:

Benjamin Stanley G.1,Jamison Brian D.1,Moninger William R.1,Sahm Susan R.1,Schwartz Barry E.1,Schlatter Thomas W.1

Affiliation:

1. NOAA/Earth System Research Laboratory, Boulder, Colorado

Abstract

Abstract An assessment is presented on the relative forecast impact on the performance of a numerical weather prediction model from eight different observation data types: aircraft, profiler, radiosonde, velocity azimuth display (VAD), GPS-derived precipitable water, aviation routine weather report (METAR; surface), surface mesonet, and satellite-based atmospheric motion vectors. A series of observation sensitivity experiments was conducted using the Rapid Update Cycle (RUC) model/assimilation system in which various data sources were denied to assess the relative importance of the different data types for short-range (3–12 h) wind, temperature, and relative humidity forecasts at different vertical levels and near the surface. These experiments were conducted for two 10-day periods, one in November–December 2006 and one in August 2007. These experiments show positive short-range forecast impacts from most of the contributors to the heterogeneous observing system over the RUC domain. In particular, aircraft observations had the largest overall impact for forecasts initialized 3–6 h before 0000 or 1200 UTC, considered over the full depth (1000–100 hPa), followed by radiosonde observations, even though the latter are available only every 12 h. Profiler data (including at a hypothetical 8-km depth), GPS-precipitable water estimates, and surface observations also led to significant improvements in short-range forecast skill.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 100 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3