East Asia Reanalysis System (EARS)

Author:

Yin JinfangORCID,Liang Xudong,Xie Yanxin,Li Feng,Hu Kaixi,Cao Lijuan,Chen FengORCID,Zou Haibo,Zhu Feng,Sun Xin,Xu Jianjun,Wang Geli,Zhao Ying,Liu JuanjuanORCID

Abstract

Abstract. Reanalysis data play a vital role in weather and climate study as well as meteorological resource development and application. In this work, the East Asia Reanalysis System (EARS) was developed using the Weather Research and Forecasting (WRF) model and the Gridpoint Statistical Interpolations (GSI) data assimilation system. The regional reanalysis system is forced by the European Centre for Medium-Range Weather Forecasts (ECMWF) global reanalysis ERA-Interim data at 6 h intervals. Hourly surface observations are assimilated by the Four-Dimension Data Assimilation (FDDA) scheme during the WRF model integration; upper observations are assimilated in three-dimensional variational data assimilation (3D-VAR) mode at the analysis moment. It should be highlighted that many of the assimilated observations have not been used in other reanalysis systems. The reanalysis runs from 1980 to 2018, producing a regional reanalysis dataset covering East Asia and surrounding areas at 12 km horizontal resolution, 74 sigma levels, and 3 h intervals. Finally, an evaluation of EARS has been performed with respect to the root mean square error (RMSE), based on the 10-year (2008–2017) observational data. Compared to the global reanalysis data of ERA-Interim, the regional reanalysis data of EARS are closer to the observations in terms of RMSE in both surface and upper-level fields. The present study provides evidence for substantial improvements seen in EARS compared to the ERA-Interim reanalysis fields over East Asia. The study also demonstrates the potential use of the EARS data for applications over East Asia and proposes further plans to provide the latest reanalysis in real-time operation mode. Simple data and updated information are available on Zenodo at https://doi.org/10.5281/zenodo.7404918 (Yin et al., 2022), and the full datasets are publicly accessible on the Data-as-a-Service platform of the China Meteorological Administration (CMA) at http://data.cma.cn (last access: 19 May 2023).

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3