Affiliation:
1. Universities Space Research Association, Huntsville, Alabama
Abstract
Abstract
The sensitivity of cloud-scale simulations of deep convection to variations in prescribed microphysics parameters is studied, using the single-moment scheme in the Regional Atmospheric Modeling System (RAMS) model. Realistic changes were made to the shape parameters in the gamma distributions of the diameters of precipitating hydrometeors and of cloud droplets, in the number concentration of cloud droplets, and in the mean size of the hail and graupel. Simulations were performed with two initial soundings that are identical except for their temperature. The precipitation rate at the ground is not very sensitive to changes in the value of the shape parameter used for all precipitating hydrometeors (rain, hail, graupel, snow, and aggregates) or to the mean size of the hail and graupel, owing to counteracting effects. For example, with a larger shape parameter value, there is a greater production of precipitation by collection of cloud water, but also a larger rate of evaporation of the liquid precipitation. However, with a larger shape parameter value, the greater production of precipitation by collection and the increased evaporation result in more low-level cooling by the downdraft. Specifying larger hail and graupel results in less low-level cooling by the downdraft. The simulation with the cold initial sounding showed a change in storm propagation velocity when the specified sizes of hail and graupel were increased, but this did not occur when the warm initial sounding was used. With a larger shape parameter for cloud water or with a larger number concentration of cloud droplets, there is less autoconversion and less collection of cloud water and, consequently, much less precipitation at the ground and denser cirrus anvils. While the number concentration of cloud droplets can be forecast in some models with parameterized microphysics, at present the shape parameter for cloud water cannot and must, therefore, be carefully selected.
Publisher
American Meteorological Society
Cited by
68 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献