Diurnal Variation Characteristics of Raindrop Size Distribution Observed by a Parsivel2 Disdrometer in the Ili River Valley

Author:

Jiang Yufei123ORCID,Yang Lianmei123ORCID,Li Jiangang123,Zeng Yong123,Tong Zepeng123,Li Xiaomeng123,Li Haoyang123

Affiliation:

1. Institute of Desert Meteorology, China Meteorological Administration, Urumqi 830002, China

2. Field Scientific Observation Base of Cloud Precipitation Physics in West Tianshan Mountains, Urumqi 830002, China

3. Xinjiang Cloud Precipitation Physics and Cloud Water Resources Development Laboratory, Urumqi 830002, China

Abstract

The diurnal variation characteristics of raindrop size distribution (RSD) in the Ili River Valley are investigated in this study, using the RSD data from May to September during 2020-2021 collected by a Parsivel2 disdrometer in Zhaosu. Significant diurnal variations (02–07, 08–13, 14–19, and 20-01 local standard time (LST)) of precipitation and RSD in Zhaosu are revealed during the rainy seasons. Precipitation mainly occurs in the late afternoon and early evening. A higher concentration of small raindrops is observed in the morning, whereas more mid-size and large raindrops are observed in the afternoon. The RSD exhibits diurnal differences between different rainfall rate classes; the diurnal difference of RSD is more pronounced in the case of high rainfall rates. Stratiform precipitation can occur at any time of the day, yet convective precipitation mainly occurs during the late afternoon and early evening. The RSD of stratiform rainfall shows a similar distribution over the four time periods. For convective rainfall, the concentration of small raindrops is the highest (lowest) over 02–07 (14–19) LST, while the highest (lowest) concentration of medium and large drops is observed over 14–19 (02–07) LST. Convective rain in the Ili River Valley over 14–19 LST can be characterized as the continental convective cluster, while in the rest time of the day, it is neither in the maritime cluster nor in the continental cluster. The empirical relationships between the radar reflectivity factor and rainfall rate (Z-R) for stratiform and convective rain types are also derived. The purpose of this study is to advance our understanding of precipitation microphysics in arid mountainous region.

Funder

Natural Science Foundation of Xinjiang

Publisher

Hindawi Limited

Subject

Atmospheric Science,Pollution,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3