Three Methods to Determine Profiles of Reflectivity from Volumetric Radar Data to Correct Precipitation Estimates

Author:

Vignal Bertrand1,Galli Gianmario1,Joss Jürg1,Germann Urs1

Affiliation:

1. Swiss Meteorological Institute, Osservatorio Ticinese, Locarno, Switzerland

Abstract

Abstract The vertical variability of radar reflectivity reduces the reliability of precipitation estimation by radar, especially in complex orography. This important source of error can, at least partially, be corrected for, if the vertical profile of radar reflectivity (VPR) is known. This work addresses three ways to determine VPR from volumetric radar data for correcting precipitation estimates. The first way uses a climatological profile. The second method, operational in Switzerland, takes the actual weather conditions into account: a mean profile is estimated directly from volumetric radar data collected close to the radar. The third way determines the identified profile, taking the variability of the VPRs in space into account. This approach yields local estimates of the profile (on areas of about 20 km × 20 km) based on an inverse method. Two cases, a convective event and a stratiform event, are used to illustrate the three ways for determining the VPR, and the resulting improvement, verified with rain gauges. An enlarged dataset of nine cases shows that a correction based on a climatological profile already improves the accuracy of rain estimates by radar significantly: the fractional standard error (FSE) is reduced from the noncorrected 44% to 31%. By correcting with a single, mean profile (averaged over 1 h using real-time data), the FSE is further reduced from 31% to 25%. Last, the use of 70 locally identified profiles leads to best results (FSE = 23%). A higher improvement (lower FSE) is obtained for the stratiform rain event than for the convective case.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3