Two-Layer Baroclinic Eddy Heat Fluxes: Zonal Flows and Energy Balance

Author:

Thompson Andrew F.1,Young William R.1

Affiliation:

1. Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Abstract

Abstract The eddy heat flux generated by statistically equilibrated baroclinic turbulence supported on a uniform, horizontal temperature gradient is examined using a two-layer β-plane quasigeostrophic model. The dependence of the eddy diffusivity of temperature, Dτ, on external parameters such as β, bottom friction κ, the deformation radius λ, and the velocity jump 2U, is provided by numerical simulations at 110 different points in the parameter space β* = βλ2/U and κ* = κλ/U. There is a special “pivot” value of β*, βpiv* ≈ 11/16, at which Dτ depends weakly on κ*. But otherwise Dτ has a complicated dependence on both β* and κ*, highlighted by the fact that reducing κ* leads to increases (decreases) in Dτ if β is less than (greater than) βpiv*. Existing heat-flux parameterizations, based on Kolmogorov cascade theories, predict that Dτ is nonzero and independent of κ* in the limit κ* → 0. Simulations show indications of this regime provided that κ* ≤ 0.04 and 0.25 ≤ β* ≤ 0.5. All important length scales in this problem, namely the mixing length, the scale of the energy containing eddies, the Rhines scale, and the spacing of the zonal jets, converge to a common value as bottom friction is reduced. The mixing length and jet spacing do not decouple in the parameter regime considered here, as predicted by cascade theories. The convergence of these length scales is due to the formation of jet-scale eddies that align along the eastward jets. The baroclinic component of these eddies helps force the zonal mean flow, which occurs through nonzero Reynolds stress correlations in the upper layer, as opposed to the barotropic mode. This behavior suggests that the dynamics of the inverse barotropic cascade are insufficient to fully describe baroclinic turbulence.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference26 articles.

1. Effects of mean flow direction on energy, isotropy, and coherence of baroclinically unstable betaplane geostrophic turbulence.;Arbic;J. Phys. Oceanogr.,2004

2. Multiple jets as PV staircases: The Phillips Effect and the resilience of eddy-transport barriers.;Dritschel;J. Atmos. Sci.,2007

3. Models of vertical structure and the calibration of two-layer models.;Flierl;Dyn. Atmos. Oceans,1978

4. Vertical transition in transport and mixing in baroclinic flows.;Greenslade;J. Atmos. Sci.,2007

5. Homogeneous quasigeostrophic turbulence driven by a uniform temperature gradient.;Haidvogel;J. Atmos. Sci.,1980

Cited by 93 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3