Edge-wave phase shifts versus normal-mode phase tilts in an Eady problem with a sloping boundary

Author:

Mak J.1ORCID,Harnik N.2ORCID,Heifetz E.2ORCID,Kumar G.31,Ong E. Q. Y.4ORCID

Affiliation:

1. Hong Kong University of Science and Technology

2. Tel Aviv University

3. ICFAI Foundation for Higher Education

4. University of New South Wales

Abstract

One mechanistic interpretation of baroclinic instability is that of mutual constructive interference of Rossby edge waves. The suppression of baroclinic instability over slopes has been widely established, where previous research argues that a sloping boundary modifies the properties of these Rossby edge waves, but does not provide a mechanistic explanation for the suppression that is valid over all parameter space. In the context of an Eady problem modified by the presence of a sloping boundary, we provide a mechanistic rationalization for baroclinic instability in the presence of slopes that is valid over all parameter space, via an equivalent formulation explicitly in terms of Rossby edge waves. We also highlight the differences between edge-wave phase shifts and normal-mode phase tilts, showing that the edge-wave phase shifts should be the ones that are mechanistically relevant, and normal-mode phase tilt is a potentially misleading quantity to use. Further, we present evidence that the edge-wave phase shifts but not normal-mode phase tilts are well correlated with geometric quantities diagnosed from an analysis framework based on eddy variance ellipses. The result is noteworthy in that the geometric framework makes no explicit reference to the edge-wave structures in its construction, and the correlation suggests the geometric framework can be used in problems where edge-wave structures are not so well defined or readily available. Some implications for parametrization of baroclinic instability and relevant eddy-mean feedbacks are discussed. For completeness, we also provide an explicit demonstration that the linear instability problem of the present modified Eady problem is parity-time symmetric, and speculate about some suggestive links between parity-time symmetry, shear instability, and the edge-wave interaction mechanism. Published by the American Physical Society 2024

Funder

Hong Kong University of Science and Technology

Australian Research Council

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3