Relative Role of Turbulent and Radiative Flux on the Near-Surface Temperature in a Single-Layer Urban Canopy Model over Houston

Author:

Brownlee James1,Ray Pallav1,Tewari Mukul2,Tan Haochen1

Affiliation:

1. Department of Ocean Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida

2. The Weather Company, IBM T. J. Watson Research Center, New York, New York

Abstract

AbstractNumerical simulations without hydrological processes tend to overestimate the near-surface temperatures over urban areas. This is presumably due to underestimation of surface latent heat flux. To test this hypothesis, the existing single-layer urban canopy model (SLUCM) within the Weather Research and Forecasting Model is evaluated over Houston, Texas. Three simulations were conducted during 24–26 August 2000. The simulations include the use of the default “BULK” urban scheme, the SLUCM without hydrological processes, and the SLUCM with hydrological processes. The results show that the BULK scheme was least accurate, and it overestimated the near-surface temperatures and winds over the urban regions. In the presence of urban hydrological processes, the SLUCM underestimates these parameters. An analysis of the surface heat fluxes suggests that the error in the BULK scheme is due to a lack of moisture at the urban surface, whereas the error in the SLUCM with hydrological processes is due to increases in moisture at the urban surface. These results confirm earlier studies in which changes in near-surface temperature were primarily due to the changes in the turbulent (latent and sensible heat) fluxes in the presence of hydrological processes. The contribution from radiative flux was about one-third of that from turbulent flux. In the absence of hydrological processes, however, the results indicate that the changes in radiative flux contribute more to the near-surface temperature changes than the turbulent heat flux. The implications of these results are discussed.

Funder

National Science Foundation

Office of Naval Research

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3