Development and evaluation of a building energy model integrated in the TEB scheme

Author:

Bueno B.,Pigeon G.,Norford L. K.,Zibouche K.,Marchadier C.

Abstract

Abstract. The use of air-conditioning systems is expected to increase as a consequence of global-scale and urban-scale climate warming. In order to represent future scenarios of urban climate and building energy consumption, the Town Energy Balance (TEB) scheme must be improved. This paper presents a new building energy model (BEM) that has been integrated in the TEB scheme. BEM-TEB makes it possible to represent the energy effects of buildings and building systems on the urban climate and to estimate the building energy consumption at city scale (~10 km) with a resolution of a neighbourhood (~100 m). The physical and geometric definition of buildings in BEM has been intentionally kept as simple as possible, while maintaining the required features of a comprehensive building energy model. The model considers a single thermal zone, where the thermal inertia of building materials associated with multiple levels is represented by a generic thermal mass. The model accounts for heat gains due to transmitted solar radiation, heat conduction through the enclosure, infiltration, ventilation, and internal heat gains. BEM allows for previously unavailable sophistication in the modelling of air-conditioning systems. It accounts for the dependence of the system capacity and efficiency on indoor and outdoor air temperatures and solves the dehumidification of the air passing through the system. Furthermore, BEM includes specific models for passive systems, such as window shadowing devices and natural ventilation. BEM has satisfactorily passed different evaluation processes, including testing its modelling assumptions, verifying that the chosen equations are solved correctly, and validating the model with field data.

Funder

European Commission

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3