Validation of Noah-Simulated Soil Temperature in the North American Land Data Assimilation System Phase 2

Author:

Xia Youlong12,Ek Michael2,Sheffield Justin3,Livneh Ben4,Huang Maoyi5,Wei Helin12,Feng Song6,Luo Lifeng7,Meng Jesse12,Wood Eric3

Affiliation:

1. * I. M. Systems Group, Inc., Camp Springs, Maryland

2. + Environmental Modeling Center of National Centers for Environmental Prediction, Camp Springs, Maryland

3. # Department of Environmental and Civil Engineering, Princeton University, Princeton, New Jersey

4. @ Department of Environmental and Civil Engineering, University of Washington, Seattle, Washington

5. & Pacific Northwest National Laboratory, Richland, Washington

6. ** School of Natural Resources, University of Nebraska—Lincoln, Lincoln, Nebraska

7. ++ Department of Geography, Michigan State University, East Lansing, Michigan

Abstract

AbstractSoil temperature can exhibit considerable memory from weather and climate signals and is among the most important initial conditions in numerical weather and climate models. Consequently, a more accurate long-term land surface soil temperature dataset is needed to improve weather and climate simulation and prediction, and is also important for the simulation of agricultural crop yield and ecological processes. The North American Land Data Assimilation phase 2 (NLDAS-2) has generated 31 years (1979–2009) of simulated hourly soil temperature data with a spatial resolution of ⅛°. This dataset has not been comprehensively evaluated to date. Thus, the purpose of this paper is to assess Noah-simulated soil temperature for different soil depths and time scales. The authors used long-term (1979–2001) observed monthly mean soil temperatures from 137 cooperative stations over the United States to evaluate simulated soil temperature for three soil layers (0–10, 10–40, and 40–100 cm) for annual and monthly time scales. Short-term (1997–99) observed soil temperatures from 72 Oklahoma Mesonet stations were used to validate simulated soil temperatures for three soil layers and for daily and hourly time scales. The results showed that the Noah land surface model generally matches observed soil temperature well for different soil layers and time scales. At greater depths, the simulation skill (anomaly correlation) decreased for all time scales. The monthly mean diurnal cycle difference between simulated and observed soil temperature revealed large midnight biases in the cold season that are due to small downward longwave radiation and issues related to model parameters.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3