Dual-Polarization Radar Rainfall Estimation over Tropical Oceans

Author:

Thompson Elizabeth J.1,Rutledge Steven A.2,Dolan Brenda2,Thurai Merhala3,Chandrasekar V.3

Affiliation:

1. Applied Physics Laboratory, University of Washington, Seattle, Washington

2. Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

3. Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, Colorado

Abstract

AbstractDual-polarization radar rainfall estimation relationships have been extensively tested in continental and subtropical coastal rain regimes, with little testing over tropical oceans where the majority of rain on Earth occurs. A 1.5-yr Indo-Pacific warm pool disdrometer dataset was used to quantify the impacts of tropical oceanic drop-size distribution (DSD) variability on dual-polarization radar variables and their resulting utility for rainfall estimation. Variables that were analyzed include differential reflectivity Zdr; specific differential phase Kdp; reflectivity Zh; and specific attenuation Ah. When compared with continental or coastal convection, tropical oceanic Zdr and Kdp values were more often of low magnitude (<0.5 dB, <0.3° km−1) and Zdr was lower for a given Kdp or Zh, consistent with observations of tropical oceanic DSDs being dominated by numerous, small, less-oblate drops. New X-, C-, and S-band R estimators were derived: R(Kdp), R(Ah), R(Kdp, ζdr), R(z, ζdr), and R(Ah, ζdr), which use linear versions of Zdr and Zh, namely ζdr and z. Except for R(Kdp), convective/stratiform partitioning was unnecessary for these estimators. All dual-polarization estimators outperformed updated R(z) estimators derived from the same dataset. The best-performing estimator was R(Kdp, ζdr), followed by R(Ah, ζdr) and R(z, ζdr). The R error was further reduced in an updated blended algorithm choosing between R(z), R(z, ζdr), R(Kdp), and R(Kdp, ζdr) depending on Zdr > 0.25 dB and Kdp > 0.3° km−1 thresholds. Because of these thresholds and the lack of hail, R(Kdp) was never used. At all wavelengths, R(z) was still needed 43% of the time during light rain (R < 5 mm h−1, Zdr < 0.25 dB), composing 7% of the total rain volume. As wavelength decreased, R(Kdp, ζdr) was used more often, R(z, ζdr) was used less often, and the blended algorithm became increasingly more accurate than R(z).

Funder

NSF GRFP

NSF

DOE/ASR

NASA PMM

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3