Impacts of the Decadal Urbanization on Thermally Induced Circulations in Eastern China

Author:

Li Mengmeng1,Mao Zhichun2,Song Yu1,Liu Mingxu1,Huang Xin3

Affiliation:

1. State Key Joint Laboratory of Environmental Simulation and Pollution Control, Department of Environmental Science, Peking University, Beijing, China

2. State Key Joint Laboratory of Environmental Simulation and Pollution Control, Department of Environmental Science, Peking University, Beijing, and 68028 Troops of the Lanzhou Military Area Command, Lanzhou, China

3. Institute for Climate and Global Change Research and School of Atmospheric Sciences, Nanjing University, Nanjing, China

Abstract

AbstractSignificant urbanization has occurred in the Yangtze River Delta region of eastern China, which exerts important effects on the local thermally induced circulations through regulating the heat flux and thermal structure. Previous studies lack a correct representation of the seasonal vegetation phenology associated with urban expansion, and therefore it is difficult to accurately describe the land–atmosphere coupling. In this study, high-resolution Moderate Resolution Imaging Spectroradiometer (MODIS) observations are used to describe the changes in land surface characteristics, including land-cover type, green vegetation fraction, and leaf area index with the Weather Research and Forecasting Model. The use of MODIS satellite observations provides a clear improvement in model performance when compared with ground-based measurements. A typical urban heat island is generated around Shanghai, Wuxi–Suzhou–Yangzhou, and cities along the Yangtze River and Hangzhou Bay, which subsequently modifies the local thermal circulations. The sea breeze is significantly enhanced over the north bank of Hangzhou Bay because of the increased land–sea temperature contrast. Several surface convergent zones are generated along the Shanghai–Suzhou–Wuxi city belt as a result of the combined effects of the urban heat island, the enhanced sea breeze, and the lake breeze at Lake Tai.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3