Assessment of Regional Climate Effects of Urbanization around Subtropical City Wuhan in Summer Using Numerical Modeling

Author:

Liu Siliang1

Affiliation:

1. School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430072, China

Abstract

China has experienced significant urbanization during the past 40 years, which exerts impacts on regional climates through changing land surface properties. Previous studies mainly focused on the Pearl River Delta, the Yangtze River Delta, and the Beijing-Tianjin-Hebei areas, while less attention has been paid to central China. In this paper, the regional climate effects of urbanization around the greater Wuhan area were investigated using the WRF model. High resolution, satellite-derived, impervious datasets were used to generate two realistic scenarios representing urban surface states of the years 1986 and 2018. By comparing the simulation results of two sensitivity experiments from 1 July 2015 to 12 July 2015, the spatial and diurnal changes in surface air temperature, surface skin temperature, and surface energy budget were analyzed. Our results reveal that urban expansion leads to 2 m air temperature and surface skin temperature increases by approximate 0.63 °C and 0.83 °C, respectively. Surface sensible heat flux increases, while latent heat flux decreases, with much greater effects in daytime than nighttime. The planetary boundary layer height (PBLH) increases with its maximum value over 100 m, and a 2 m water vapor mixing ratio decreases with a peak value around −2 g/kg. These findings provide knowledge to improve the understanding of land–atmospheric interactions and pave the way to studying urban expansion effects under future climate change scenarios.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3