Impact of Urbanization on Heavy Convective Precipitation under Strong Large-Scale Forcing: A Case Study over the Milwaukee–Lake Michigan Region

Author:

Yang Long1,Smith James A.2,Baeck Mary Lynn2,Bou-Zeid Elie2,Jessup Stephen M.3,Tian Fuqiang4,Hu Heping4

Affiliation:

1. State Key Laboratory of Hydro-science and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, China, and Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey

2. Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey

3. Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, New York

4. Department of Hydraulic Engineering, Tsinghua University, Beijing, China

Abstract

Abstract In this study, observational and numerical modeling analyses based on the Weather Research and Forecasting Model (WRF) are used to investigate the impact of urbanization on heavy rainfall over the Milwaukee–Lake Michigan region. The authors examine urban modification of rainfall for a storm system with continental-scale moisture transport, strong large-scale forcing, and extreme rainfall over a large area of the upper Midwest of the United States. WRF simulations were carried out to examine the sensitivity of the rainfall distribution in and around the urban area to different urban land surface model representations and urban land-use scenarios. Simulation results suggest that urbanization plays an important role in precipitation distribution, even in settings characterized by strong large-scale forcing. For the Milwaukee–Lake Michigan region, the thermodynamic perturbations produced by urbanization on the temperature and surface pressure fields enhance the intrusion of the lake breeze and facilitate the formation of a convergence zone, which create favorable conditions for deep convection over the city. Analyses of model and observed vertical profiles of reflectivity using contoured frequency by altitude displays (CFADs) suggest that cloud dynamics over the city do not change significantly with urbanization. Simulation results also suggest that the large-scale rainfall pattern is not sensitive to different urban representations in the model. Both urban representations, the Noah land surface model with urban land categories and the single-layer urban canopy model, adequately capture the dominant features of this storm over the urban region.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3