Wind-Climate Estimation Based on Mesoscale and Microscale Modeling: Statistical–Dynamical Downscaling for Wind Energy Applications

Author:

Badger Jake1,Frank Helmut2,Hahmann Andrea N.1,Giebel Gregor1

Affiliation:

1. Department for Wind Energy (DTU Wind Energy), Technical University of Denmark, Roskilde, Denmark

2. Deutscher Wetterdienst, Offenbach am Main, Germany

Abstract

AbstractThis paper demonstrates that a statistical–dynamical method can be used to accurately estimate the wind climate at a wind farm site. In particular, postprocessing of mesoscale model output allows an efficient calculation of the local wind climate required for wind resource estimation at a wind turbine site. The method is divided into two parts: 1) preprocessing, in which the configurations for the mesoscale model simulations are determined, and 2) postprocessing, in which the data from the mesoscale simulations are prepared for wind energy application. Results from idealized mesoscale modeling experiments for a challenging wind farm site in northern Spain are presented to support the preprocessing method. Comparisons of modeling results with measurements from the same wind farm site are presented to support the postprocessing method. The crucial element in postprocessing is the bridging of mesoscale modeling data to microscale modeling input data, via a so-called generalization method. With this method, very high-resolution wind resource mapping can be achieved.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference25 articles.

1. Simulation of unstationary wind and temperature fields over complex terrain and comparison with observations;Adrian;Beitr. Phys. Atmos.,1991

2. Wind class sampling of satellite SAR imagery for offshore wind resource mapping;Badger;J. Appl. Meteor. Climatol.,2010

3. Boundary-layer modelling for wind climate estimates;Bergström;Wind Eng.,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3