Optimization and Evaluation of the Weather Research and Forecasting (WRF) Model for Wind Energy Resource Assessment and Mapping in Iran

Author:

Saadatabadi Abbas Ranjbar1,Hamzeh Nasim Hossein2ORCID,Kaskaoutis Dimitris G.3ORCID,Ghasabi Zahra1,Penchah Mohammadreza Mohammadpour4,Sotiropoulou Rafaella-Eleni P.5ORCID,Habibi Maral6ORCID

Affiliation:

1. Department of Meteorology, Research Institute of Meteorology and Atmospheric Science (RIMAS), Tehran 14118-13389, Iran

2. Department of Meteorology, Air and Climate Technology Company (ACTC), Tehran 15996-16313, Iran

3. Department of Chemical Engineering, University of Western Macedonia, 50100 Kozani, Greece

4. Geophysical Institute, Bergen Offshore Wind Centre, University of Bergen, Allégaten 70, 5007 Bergen, Norway

5. Department of Mechanical Engineering, University of Western Macedonia, 50100 Kozani, Greece

6. Department of Geography and Regional Science, University of Graz, 8010 Graz, Austria

Abstract

This study aims to optimize the Weather Research and Forecasting (WRF) model regarding the choice of the best planetary boundary layer (PBL) physical scheme and to evaluate the model’s performance for wind energy assessment and mapping over the Iranian territory. In this initiative, five PBL and surface layer parameterization schemes were tested, and their performance was evaluated via comparison with observational wind data. The study used two-way nesting domains with spatial resolutions of 15 km and 5 km to represent atmospheric circulation patterns affecting the study area. Additionally, a seventeen-year simulation (2004–2020) was conducted, producing wind datasets for the entire Iranian territory. The accuracy of the WRF model was assessed by comparing its results with observations from multiple sites and with the high-resolution Global Wind Atlas. Statistical parameters and wind power density were calculated from the simulated data and compared with observations to evaluate wind energy potential at specific sites. The model’s performance was sensitive to the horizontal resolution of the terrain data, with weaker simulations for wind speeds below 3 m/s and above 10 m/s. The results confirm that the WRF model provides reliable wind speed data for realistic wind energy assessment studies in Iran. The model-generated wind resource map identifies areas with high wind (wind speed > 5.6 m/s) potential that are currently without wind farms or Aeolic parks for exploitation of the wind energy potential. The Sistan Basin in eastern Iran was identified as the area with the highest wind power density, while areas west of the Zagros Mountains and in southwest Iran showed high aeolian potential during summer. A novelty of this research is the application of the WRF model in an area characterized by high topographical complexities and specific geographical features. The results provide practical solutions and valuable insights for industry stakeholders, facilitating informed decision making, reducing uncertainties, and promoting the effective utilization of wind energy resources in the region.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3