Polarimetric Radar Characteristics of Melting Hail. Part I: Theoretical Simulations Using Spectral Microphysical Modeling

Author:

Ryzhkov Alexander V.1,Kumjian Matthew R.1,Ganson Scott M.1,Khain Alexander P.2

Affiliation:

1. Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR National Severe Storms Laboratory, Norman, Oklahoma

2. The Hebrew University of Jerusalem, Jerusalem, Israel

Abstract

AbstractSpectral (bin) microphysics models are used to simulate polarimetric radar variables in melting hail. Most computations are performed in a framework of a steady-state, one-dimensional column model. Vertical profiles of radar reflectivity factor Z, differential reflectivity ZDR, specific differential phase KDP, specific attenuation Ah, and specific differential attenuation ADP are modeled at S, C, and X bands for a variety of size distributions of ice particles aloft. The impact of temperature lapse rate, humidity, vertical air velocities, and ice particle density on the vertical profiles of the radar variables is also investigated. Polarimetric radar signatures of melting hail depend on the degree of melting or the height of the radar resolution volume with respect to the freezing level, which determines the relative fractions of partially and completely melted hail (i.e., rain). Simulated vertical profiles of radar variables are very sensitive to radar wavelength and the slope of the size distribution of hail aloft, which is correlated well with maximal hail size. Analysis of relative contributions of different parts of the hail/rain size spectrum to the radar variables allows explanations of a number of experimentally observed features such as large differences in Z of hail at the three radar wavelengths, unusually high values of ZDR at C band, and relative insensitivity of the measurements at C and X bands to the presence of large hail exceeding 2.5 cm in diameter. Modeling results are consistent with S- and C-band polarimetric radar observations and are utilized in Part II for devising practical algorithms for hail detection and determination of hail size as well as attenuation correction and rainfall estimation in the presence of hail.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference58 articles.

1. C-band dual-polarimetric radar signatures of hail;Anderson;Electron. J. Oper. Meteor.,2011

2. Multi-wavelength radar reflectivity of hailstorms;Atlas;Quart. J. Roy. Meteor. Soc.,1961

3. A computational study of polarimetric radar observables in hail;Aydin;IEEE Trans. Geosci. Remote Sens.,1990

4. Remote sensing of hail with a dual linear polarization radar;Aydin;J. Climate Appl. Meteor.,1986

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3