Estimation of Snowfall Properties at a Mountainous Site in Norway Using Combined Radar and In Situ Microphysical Observations

Author:

Schirle Claire E.1,Cooper Steven J.1,Wolff Mareile Astrid2,Pettersen Claire3,Wood Norman B.3,L’Ecuyer Tristan S.3,Ilmo Trond2,Nygård Knut2

Affiliation:

1. University of Utah, Salt Lake City, Utah

2. Norwegian Meteorological Institute, Oslo, Norway

3. University of Wisconsin–Madison, Madison, Wisconsin

Abstract

AbstractThe ability of in situ snowflake microphysical observations to constrain estimates of surface snowfall accumulations derived from coincident, ground-based radar observations is explored. As part of the High-Latitude Measurement of Snowfall (HiLaMS) field campaign, a Micro Rain Radar (MRR), Precipitation Imaging Package (PIP), and Multi-Angle Snow Camera (MASC) were deployed to the Haukeliseter Test Site run by the Norwegian Meteorological Institute during winter 2016/17. This measurement site lies near an elevation of 1000 m in the mountains of southern Norway and houses a double-fence automated reference (DFAR) snow gauge and a comprehensive set of meteorological observations. MASC and PIP observations provided estimates of particle size distribution (PSD), fall speed, and habit. These properties were used as input for a snowfall retrieval algorithm using coincident MRR reflectivity measurements. Retrieved surface snowfall accumulations were evaluated against DFAR observations to quantify retrieval performance as a function of meteorological conditions for the Haukeliseter site. These analyses found differences of less than 10% between DFAR- and MRR-retrieved estimates over the field season when using either PIP or MASC observations for low wind “upslope” events. Larger biases of at least 50% were found for high wind “pulsed” events likely because of sampling limitations in the in situ observations used to constrain the retrieval. However, assumptions of MRR Doppler velocity for mean particle fall speed and a temperature-based PSD parameterization reduced this difference to +16% for the pulsed events. Although promising, these results ultimately depend upon selection of a snowflake particle model that is well matched to scene environmental conditions.

Funder

National Science Foundation

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3