Snowfall Microphysics Characterized by PARSIVEL Disdrometer Observations in Beijing from 2020 to 2022

Author:

Shen Yonghai,Chen YichenORCID,Bi Yongheng,Lyu Daren,Chen Hongbin,Duan Shu

Abstract

Accurate snowfall forecasting and quantitative snowfall estimation remain challenging due to the complexity and variability of snow microphysical properties. In this paper, the microphysical characteristics of snowfall in the Yanqing mountainous area of Beijing are investigated by using a Particle Size and Velocity (PARSIVEL) disdrometer. Results show that the high snowfall intensity process has large particle-size distribution (PSD) peak concentration, but the distribution of its spectrum width is much smaller than that of moderate or low snowfall intensity. When the snowfall intensity is high, the corresponding Dm value is smaller and the Nw value is larger. Comparison between the fitted μ−Λ relationship and the relationships of different locations show that there are regional differences. Based on dry snow samples, the Ze−SR relationship fitted in this paper is more consistent with the Ze−SR relationship of dry snow in Nanjing, China. The fitted ρs−Dm relationship of dry snow is close to the relationship in Pyeongchang, Republic of Korea, but the relationship of wet snow shows greatly difference. At last, the paper analyzes the statistics on velocity and diameter distribution of snow particles according to different snowfall intensities.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3