Toward Improving Ice Water Content and Snow-Rate Retrievals from Radars. Part I: X and W Bands, Emphasizing CloudSat

Author:

Heymsfield Andrew J.1,Matrosov Sergey Y.2,Wood Norman B.3

Affiliation:

1. National Center for Atmospheric Research,* Boulder, Colorado

2. Cooperative Institute for Research in Environmental Sciences, University of Colorado, and NOAA/Earth System Research Laboratory, Boulder, Colorado

3. Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, Madison, Wisconsin

Abstract

AbstractMicrophysical data and radar reflectivities (Ze, −15 < Ze < 10 dB) measured from flights during the NASA Tropical Clouds, Convection, Chemistry and Climate field program are used to relate Ze at X and W band to measured ice water content (IWC). Because nearly collocated Ze and IWC were each directly measured, ZeIWC relationships could be developed directly. Using the particle size distributions and ice particle masses evaluated based on the direct IWC measurements, reflectivity–snowfall rate (ZeS) relationships were also derived. For −15 < Ze < 10 dB, the relationships herein yield larger IWC and S than given by the retrievals and earlier relationships. The sensitivity of radar reflectivity to particle size distribution and size-dependent mass, shape, and orientation introduces significant uncertainties in retrieved quantities since these factors vary substantially globally. To partially circumvent these uncertainties, a W-band ZeS relationship is developed by relating four years of global CloudSat reflectivity observations measured immediately above the melting layer to retrieved rain rates at the base of the melting layer. The supporting assumptions are that the water mass flux is constant through the melting layer, that the air temperature is nearly 0°C, and that the retrieved rain rates are well constrained. Where Ze > 10 dB, this ZeS relationship conforms well to earlier relationships, but for Ze < 10 dB it yields higher IWC and S. Because not all retrieval algorithms estimate either or both IWC and S, the authors use a large aircraft-derived dataset to relate IWC and S. The IWC can then be estimated from S and vice versa.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3