An Investigation of a Northeast U.S. Cyclone Event without Well-Defined Snow Banding during IMPACTS

Author:

Colle Brian A.1ORCID,Yeh Phillip1,Finlon Joseph A.2,McMurdie Lynn2,McDonald Victoria2,DeLaFrance Andrew2

Affiliation:

1. a School of Marine and Atmospheric Sciences, Stony Brook University, State University of New York, Stony Brook, New York

2. b Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Abstract

Abstract On 7 February 2020 a relatively deep cyclone (∼980 hPa) with midlevel frontogenesis produced heavy snow (20–30 mm liquid equivalent) over western and central New York State. Despite these characteristics, the precipitation was not organized into a narrow band of intensive snowfall. This event occurred during the Investigation of Microphysics and Precipitation for Atlantic Coast-Threatening Snowstorms (IMPACTS) field campaign. Using coordinated flight legs across New York State, a remote sensing aircraft (ER-2) sampled above the cloud, while a P-3 aircraft collected in-cloud data. These data are used to validate several Weather Research and Forecasting (WRF) Model simulations at 2- and 0.67-km grid spacing using different initial and boundary conditions (RAP, GFS, and ERA5 analyses) and microphysics schemes (Thompson and P3). The differences between the WRF runs are used to explore sensitivity to initial conditions and microphysics schemes. All 18–24-h runs realistically produced a broad sloping region of frontogenesis at midlevels typically; however, there were relatively large (20%–30%) uncertainties in the magnitude of this forcing using different analyses and initialization times. The differences in surface precipitation distribution are small (<10%) among the microphysics schemes, likely because there was little riming in the region of heaviest precipitation. Those runs with frontogenesis closest to the RAP analysis and a surface precipitation underprediction of 20%–30% have too little ice aloft and at low levels, suggesting deficiencies in ice generation and snow growth aloft in those runs. The 0.67-km grid produced more realistic convective cells aloft, but only 5%–10% more precipitation than the 2-km grid. Significance Statement Heavy snowfall from U.S. East Coast winter storms can cause major societal problems, yet few studies have investigated these storms using field observations and model data. This study focuses on the 7 February 2020 event, where 20–40 cm of snow fell over west-central New York. Our analysis shows a broad region of ascent, rather than a concentrated region favoring a well-defined snowband was the primary process contributing to snowfall. Last, model microphysics were validated within this storm using the in situ aircraft data. Errors in the snow generation aloft and snow growth at low levels likely contributed to the simulated surface precipitation underprediction, but most of the forecast uncertainty is from initial conditions for this short-term (∼24-h lead time) forecast.

Funder

NASA

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference52 articles.

1. A North American hourly assimilation and model forecast cycle: The Rapid Refresh;Benjamin, S. G.,2016

2. A technical overview of the New York State mesonet standard network;Brotzge, J. A.,2020

3. Surface microphysical observations within East Coast winter storms on Long Island, New York;Colle, B. A.,2014

4. Validation of snow multi-bands in the comma head of a cyclone using a 40-member ensemble;Connelly, R.,2019

5. An operational objective analysis system;Cressman, G. P.,1959

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3