Baseline Probabilities for the Seasonal Prediction of Meteorological Drought

Author:

Lyon Bradfield,Bell Michael A.,Tippett Michael K.,Kumar Arun,Hoerling Martin P.,Quan Xiao-Wei,Wang Hui

Abstract

AbstractThe inherent persistence characteristics of various drought indicators are quantified to extract predictive information that can improve drought early warning. Predictive skill is evaluated as a function of the seasonal cycle for regions within North America. The study serves to establish a set of baseline probabilities for drought across multiple indicators amenable to direct comparison with drought indicator forecast probabilities obtained when incorporating dynamical climate model forecasts. The emphasis is on the standardized precipitation index (SPI), but the method can easily be applied to any other meteorological drought indicator, and some additional examples are provided. Monte Carlo resampling of observational data generates two sets of synthetic time series of monthly precipitation that include, and exclude, the annual cycle while removing serial correlation. For the case of no seasonality, the autocorrelation (AC) of the SPI (and seasonal precipitation percentiles, moving monthly averages of precipitation) decays linearly with increasing lag. It is shown that seasonality in the variance of accumulated precipitation serves to enhance or diminish the persistence characteristics (AC) of the SPI and related drought indicators, and the seasonal cycle can thereby provide an appreciable source of drought predictability at regional scales. The AC is used to obtain a parametric probability density function of the future state of the SPI that is based solely on its inherent persistence characteristics. In addition, a method is presented for determining the optimal persistence of the SPI for the case of no serial correlation in precipitation (again, the baseline case). The optimized, baseline probabilities are being incorporated into Internet-based tools for the display of current and forecast drought conditions in near–real time.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference28 articles.

1. The Palmer drought severity index: Limitations and assumptions;Alley;J. Climate Appl. Meteor.,1984

2. Assessing objective techniques for gauge-based analyses of global daily precipitation;Chen;J. Geophys. Res.,2008

3. Extended streamflow forecasting using NWSRFS;Day;J. Water Resour. Plan. Manage.,1985

4. Accepting the standardized precipitation index: A calculation algorithm;Guttman;J. Amer. Water Resour. Assoc.,1999

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3