The role of spatial scale in drought monitoring and early warning systems: a review

Author:

Mardian Jacob12ORCID

Affiliation:

1. Department of Geography, Environment and Geomatics, University of Guelph, 50 Stone Road E., Guelph, ON N1G 2W1, Canada

2. AgroClimate, Geomatics and Earth Observation Division, Science and Technology Branch, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada

Abstract

Drought is a costly natural disaster characterized by water shortages that impact water availability, agriculture, ecosystems, and the economy. The driving mechanisms of drought operate on a wide range of spatial scales, from the movement of soil water on a hillslope to global atmospheric circulation. Additionally, drought impacts vary across spatial scales, from drought induced crop stress on a specific agricultural field to widespread continental water shortages. As a result, multiscalar drought monitoring and early warning systems are needed to utilize observational data sets obtained at different spatial scales and to communicate drought impacts to various levels of decision-makers in government and industry. However, scaling must be employed to translate information across scales, either to fix incongruencies in the spatial scale of input data sets or to modify the model output scale. These scaling techniques have several challenges and limitations that hinder drought accuracy and interpretability, such as the Modifiable Areal Unit Problem (MAUP) and increased model uncertainty. This paper reviews the role of spatial scale in drought monitoring and early warning systems, the associated challenges, and techniques to minimize their impact. Finally, this review identifies several knowledge gaps and future directions.

Publisher

Canadian Science Publishing

Subject

General Environmental Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3