Severe Hail Fall and Hailstorm Detection Using Remote Sensing Observations

Author:

Murillo Elisa M.1,Homeyer Cameron R.1

Affiliation:

1. School of Meteorology, University of Oklahoma, Norman, Oklahoma

Abstract

AbstractSevere hail days account for the vast majority of severe weather–induced property losses in the United States each year. In the United States, real-time detection of severe storms is largely conducted using ground-based radar observations, mostly using the operational Next Generation Weather Radar network (NEXRAD), which provides three-dimensional information on the physics and dynamics of storms at ~5-min time intervals. Recent NEXRAD upgrades to higher resolution and to dual-polarization capabilities have provided improved hydrometeor discrimination in real time. New geostationary satellite platforms have also led to significant changes in observing capabilities over the United States beginning in 2016, with spatiotemporal resolution that is comparable to that of NEXRAD. Given these recent improvements, a thorough assessment of their ability to identify hailstorms and hail occurrence and to discriminate between hail sizes is needed. This study provides a comprehensive comparative analysis of existing observational radar and satellite products from more than 10 000 storms objectively identified via radar echo-top tracking and nearly 6000 hail reports during 30 recent severe weather days (2013–present). It is found that radar observations provide the most skillful discrimination between severe and nonsevere hailstorms and identification of individual hail occurrence. Single-polarization and dual-polarization radar observations perform similarly at these tasks, with the greatest skill found from combining both single- and dual-polarization metrics. In addition, revisions to the “maximum expected size of hail” (MESH) metric are proposed and are shown to improve spatiotemporal comparisons between reported hail sizes and radar-based estimates for the cases studied.

Funder

National Aeronautics and Space Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference101 articles.

1. The characteristics of United States hail reports: 1955–2014;Allen;Electron. J. Severe Storms Meteor.,2015

2. An extreme value model for U.S. hail size;Allen;Mon. Wea. Rev.,2017

3. VIL density as a hail indicator;Amburn;Wea. Forecasting,1997

4. Relationships between deep convection updraft characteristics and satellite-based super rapid scan mesoscale atmospheric motion vector–derived flow;Apke;Mon. Wea. Rev.,2018

5. Remote sensing of hail with a dual linear polarization radar;Aydin;J. Climate Appl. Meteor.,1986

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3