Objective Tropical Cyclone Center Tracking Using Single-Doppler Radar

Author:

Bell Michael M.,Lee Wen-Chau

Abstract

AbstractThis study presents an extension of the ground-based velocity track display (GBVTD)-simplex tropical cyclone (TC) circulation center–finding algorithm to further improve the accuracy and consistency of TC center estimates from single-Doppler radar data. The improved center-finding method determines a TC track that ensures spatial and temporal continuities of four primary characteristics: the radius of maximum wind, the maximum axisymmetric tangential wind, and the latitude and longitude of the TC circulation center. A statistical analysis improves the consistency of the TC centers over time and makes it possible to automate the GBVTD-simplex algorithm for tracking of landfalling TCs. The characteristics and performance of this objective statistical center-finding method are evaluated using datasets from Hurricane Danny (1997) and Bret (1999) over 5-h periods during which both storms were simultaneously observed by two coastal Weather Surveillance Radar-1988 Doppler (WSR-88D) units. Independent single-Doppler and dual-Doppler centers are determined and used to assess the absolute accuracy of the algorithm. Reductions of 50% and 10% in the average distance between independent center estimates are found for Danny and Bret, respectively, over the original GBVTD-simplex method. The average center uncertainties are estimated to be less than 2 km, yielding estimated errors of less than 5% in the retrieved radius of maximum wind and wavenumber-0 axisymmetric tangential wind, and ~30% error in the wavenumber-1 asymmetric tangential wind. The objective statistical center-finding method can be run on a time scale comparable to that of a WSR-88D volume scan, thus making it a viable tool for both research and operational use.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3