Eyewall asymmetries and their contributions to the intensification of an idealized tropical cyclone translating in uniform flow

Author:

Martinez Jonathan1,Davis Christopher A.1,Bell Michael M.2

Affiliation:

1. a National Center for Atmospheric Research

2. b Colorado State University

Abstract

Abstract Scale-dependent processes within the tropical cyclone (TC) eyewall and their contributions to intensification are examined in an idealized simulation of a TC translating in uniform environmental flow. The TC circulation is partitioned into axisymmetric, low-wavenumber (m = 1–3), and high-wavenumber (m > 3) categories, and scale-dependent contributions to the intensification process are quantified through the azimuthal-mean relative (vertical) vorticity and tangential momentum budgets. To further account for the interdependent relationship between the axisymmetric vortex structure and eyewall asymmetries, the analyses are subdivided into three periods—early, middle, and late—that represent the approximate quartiles of the full intensification period prior to the TC attaining its maximum intensity. The asymmetries become concentrated among lower azimuthal wavenumbers during the intensification process and are persistently distributed among a broader range of azimuthal scales at higher altitudes. The scale-dependent budgets demonstrate that the axisymmetric and asymmetric processes generally oppose each other during TC intensification. The axisymmetric processes are mostly characterized by a radial spin-up dipole pattern, with a tangential momentum spin-up tendency concentrated along the radius of maximum tangential winds (RMW) and a spin-down tendency concentrated radially inward of the RMW. The asymmetric processes are mostly characterized by an opposing spin-down dipole pattern that is slightly weaker in magnitude. The most salient exception occurs from high-wavenumber processes contributing to a relatively modest, net spin-up along the RMW between ~2–4 km altitude. Given that the maximum tangential winds persistently reside below 2-km altitude, eyewall asymmetries are primarily found to impede TC intensification.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3