A Physically Based Multisensor Quantitative Precipitation Estimation Approach for Gap-Filling Radar Coverage

Author:

Martinaitis Steven M.1,Osborne Andrew P.1,Simpson Micheal J.1,Zhang Jian2,Howard Kenneth W.2,Cocks Stephen B.1,Arthur Ami1,Langston Carrie1,Kaney Brian T.1

Affiliation:

1. Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

2. NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Abstract

AbstractWeather radars and gauge observations are the primary observations to determine the coverage and magnitude of precipitation; however, radar and gauge networks have significant coverage gaps, which can underrepresent or even miss the occurrence of precipitation. This is especially noticeable in mountainous regions and in shallow precipitation regimes. The following study presents a methodology to improve spatial representations of precipitation by seamlessly blending multiple precipitation sources within the Multi-Radar Multi-Sensor (MRMS) system. A high spatiotemporal resolution multisensor merged quantitative precipitation estimation (QPE) product (MSQPE) is generated by using gauge-corrected radar QPE as a primary precipitation source with a combination of hourly gauge observations, monthly precipitation climatologies, numerical weather prediction short-term precipitation forecasts, and satellite observations to use in areas of insufficient radar coverage. The merging of the precipitation sources is dependent upon radar coverage based on an updated MRMS radar quality index, surface and atmospheric conditions, topography, gauge locations, and precipitation values. Evaluations of the MSQPE product over the western United States resulted in improved statistical measures over its individual input precipitation sources, particularly the locally gauge-corrected radar QPE. The MSQPE scheme demonstrated its ability to sufficiently fill in areas where radar alone failed to detect precipitation due to significant beam blockage or poor coverage while minimizing the generation of false precipitation and underestimation biases that resulted from radar overshooting precipitation.

Funder

NOAA Research

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3