Characterizing the Potential Predictability of Seasonal, Station-Based Heavy Precipitation Accumulations and Extreme Dry Spell Durations*

Author:

Anderson Bruce T.1,Gianotti Dan2,Salvucci Guido2

Affiliation:

1. Department of Earth and Environment, and The Frederick S. Pardee Center for the Study of the Longer-Range Future, Boston University, Boston, Massachusetts

2. Department of Earth and Environment, Boston University, Boston, Massachusetts

Abstract

Abstract The release of seasonal (and longer) predictions of various climatological quantities is now routine. While undoubtedly devastating to lives and livelihoods, it is unclear whether seasonal extremes in precipitation—for example, extreme dry spells leading to droughts or heavy precipitation events leading to flooding—represent a feasible target for these predictions, that is, whether they are potentially predictable or are instead inherently unpredictable more than a few days to weeks in advance. This paper assesses the potential for predicting seasonal extremes in observed precipitation as a function of region and time of year by decomposing the station-based variance into that attributable to short-memory behavior of typical meteorological events—as generated from station-specific, seasonally varying, daily time-scale stationary stochastic weather models (SSWMs)—and that attributable to longer-time-scale, potentially predictable changes in precipitation-producing processes. Findings suggest the potential for making skillful predictions of seasonal precipitation extremes over the United States is enhanced (reduced) during the cool (warm) season, particularly for heavy precipitation event accumulations. Further, this potential is accentuated along the West Coast, around the Great Lakes, and over the central plains and Ohio River valley but is diminished over the Northeast and northern Great Plains. However, findings also suggest the potential for producing seasonal (and longer) predictions of seasonal precipitation extremes is spatially and seasonally dependent. As such, this paper includes supplemental material for the potentially predictable variance of seasonal extreme dry spell lengths, heavy event accumulations, and total accumulations at 774 stations across all 365 days so readers can evaluate the potential predictability for the location, timing, and metric of most relevance to them.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3