Validation of the CERES Edition 2B Surface-Only Flux Algorithms

Author:

Kratz David P.1,Gupta Shashi K.2,Wilber Anne C.2,Sothcott Victor E.2

Affiliation:

1. Science Directorate, NASA Langley Research Center, Hampton, Virginia

2. Science Systems Applications, Inc., Hampton, Virginia

Abstract

Abstract The Clouds and the Earth’s Radiant Energy System (CERES) project uses two shortwave (SW) and two longwave (LW) algorithms to derive surface radiative fluxes on an instantaneous footprint basis from a combination of top-of-atmosphere fluxes, ancillary meteorological data, and retrieved cloud properties. Since the CERES project examines the radiative forcings and feedbacks for Earth’s entire climate system, validation of these models for a wide variety of surface conditions is paramount. The present validation effort focuses upon the ability of these surface-only flux algorithms to produce accurate CERES Edition 2B single scanner footprint data from the Terra and Aqua spacecraft measurements. To facilitate the validation process, high-quality radiometric surface observations have been acquired that were coincident with the CERES-derived surface fluxes. For both SW models, systematic errors range from −20 to −12 W m−2 (from −2.8% to −1.6%) for global clear-sky cases, while for the all-sky SW model, the systematic errors range from 14 to 21 W m−2 (3.2%–4.8%) for global cloudy-sky cases. Larger systematic errors were seen for the individual surface types, and significant random errors where observed, especially for cloudy-sky cases. While the SW models nearly achieved the 20 W m−2 accuracy requirements established for climate research, further improvements are warranted. For the clear-sky LW model, systematic errors were observed to fall within ±5.4 W m−2 (±1.9%) except for the polar case in which systematic errors on the order from −15 to −11 W m−2 (from −13% to −7.2%) occurred. For the all-sky LW model, systematic errors were less than ±9.2 W m−2 (±7.6%) for both the clear-sky and cloudy-sky cases. The random errors were less than 17 W m−2 (6.2%) for clear-sky cases and 28 W m−2 (13%) for cloudy-sky cases, except for the desert cases in which very high surface skin temperatures caused an overestimation in the model-calculated surface fluxes. Overall, however, the LW models met the accuracy requirements for climate research.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference44 articles.

1. SURFRAD – A national surface radiation budget network for atmospheric research.;Augustine;Bull. Amer. Meteor. Soc.,2000

2. Earth Radiation Budget Experiment archival and April 1985 results.;Barkstrom;Bull. Amer. Meteor. Soc.,1989

3. Documentation and validation of the Goddard Earth Observing System (GEOS) Data Assimilation System — version 4.;Bloom,2005

4. Infrared radiative energy transfer in gases.;Cess,1972

5. Compute surface and atmospheric fluxes (System 5.0).;Charlock,1997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3