A Cloud Water Path-Based Model for Cloudy-Sky Downward Longwave Radiation Estimation from FY-4A Data

Author:

Yu Shanshan1ORCID,Xin Xiaozhou1,Zhang Hailong1ORCID,Li Li1ORCID,Zhu Lin2ORCID,Liu Qinhuo1ORCID

Affiliation:

1. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China

2. National Satellite Meteorological Centre, China Meteorological Administration, Beijing 100081, China

Abstract

Clouds are a critical factor in regulating the climate system, and estimating cloudy-sky Surface Downward Longwave Radiation (SDLR) from satellite data is significant for global climate change research. The models based on cloud water path (CWP) are less affected by cloud parameter uncertainties and have superior accuracy in SDLR satellite estimation when compared to those empirical and parameterized models relying mainly on cloud fraction or cloud-base temperature. However, existing CWP-based models tend to overestimate the low SDLR values and underestimate the larger SDLR. This study found that this phenomenon was caused by the fact that the models do not account for the varying relationships between cloud radiative effects and key parameters under different Liquid Water Path (LWP) and Precipitable Water Vapor (PWV) ranges. Based upon this observation, this study utilized Fengyun-4A (FY-4A) cloud parameters and ERA5 data as data sources to develop a new CWP-based model where the model coefficients depend on the cloud phase and cloud water path range. The accuracy of the new model’s estimated SDLR is 20.8 W/m2 for cloudy pixels, with accuracies of 19.4 W/m2 and 23.5 W/m2 for overcast and partly cloudy conditions, respectively. In contrast, the accuracy of the old CWP-based model was 22.4, 21.2, and 24.8 W/m2, respectively. The underestimation and overestimation present in the old CWP-based model are effectively corrected by the new model. The new model exhibited higher accuracy under various station locations, cloud cover scenarios, and cloud phase conditions compared to the old one. Comparatively, the new model showcased its most remarkable improvements in situations involving overcast conditions, water clouds with low PWV and low LWP values, ice clouds with large PWV, and conditions with PWV ≥ 5 cm. Over a temporal scale, the new model effectively captured the seasonal variations in SDLR.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3