Stochastic Forcing of the North Atlantic Wind-Driven Ocean Circulation. Part II: An Analysis of the Dynamical Ocean Response Using Generalized Stability Theory

Author:

Chhak Kettyah C.1,Moore Andrew M.1,Milliff Ralph F.2,Branstator Grant3,Holland William R.3,Fisher Michael4

Affiliation:

1. Program in Atmospheric and Oceanic Sciences, and Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado

2. Colorado Research Associates, Boulder, Colorado

3. National Center for Atmospheric Research,* Boulder, Colorado

4. European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom

Abstract

Abstract As discussed in Part I of this study, the magnitude of the stochastic component of wind stress forcing is comparable to that of the seasonal cycle and thus will likely have a significant influence on the ocean circulation. By forcing a quasigeostrophic model of the North Atlantic Ocean circulation with stochastic wind stress curl data from the NCAR CCM3, it was found in Part I that much of the stochastically induced variability in the ocean circulation is confined to the western boundary region and some major topographic features even though the stochastic forcing is basinwide. This can be attributed to effects of bathymetry and vorticity gradients in the basic state on the system eigenmodes. Using generalized stability theory (GST), it was found in Part I that transient growth due to the linear interference of nonnormal eigenmodes enhances the stochastically induced variance. In the present study, the GST analysis of Part I is extended and it is found that the patterns of wind stress curl that are most effective for inducing variability in the model have their largest projection on the most nonnormal eigenmodes of the system. These eigenmodes are confined primarily to the western boundary region and are composed of long Rossby wave packets that are Doppler shifted by the Gulf Stream to have eastward group velocity. Linear interference of these eigenmodes yields transient growth of stochastically induced perturbations, and it is this process that maintains the variance of the stochastically induced circulations. Analysis of the large-scale circulation also reveals that the system possesses a large number of degrees of freedom, which has significant implications for ocean prediction. Sensitivity studies show that the results and conclusions of this study are insensitive and robust to variations in model parameters and model configuration.

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3