An Adjoint Sensitivity Analysis of the Southern California Current Circulation and Ecosystem

Author:

Moore Andrew M.1,Arango Hernan G.2,Di Lorenzo Emanuele3,Miller Arthur J.4,Cornuelle Bruce D.4

Affiliation:

1. Department of Ocean Sciences, University of California, Santa Cruz, Santa Cruz, California

2. Institute of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey

3. School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia

4. Climate Research Division, Scripps Institute of Oceanography, University of California, San Diego, La Jolla, California

Abstract

Abstract Adjoint methods of sensitivity analysis were applied to the California Current using the Regional Ocean Modeling Systems (ROMS) with medium resolution, aimed at diagnosing the circulation sensitivity to variations in surface forcing. The sensitivities of coastal variations in SST, eddy kinetic energy, and baroclinic instability of complex time-evolving flows were quantified. Each aspect of the circulation exhibits significant interannual and seasonal variations in sensitivity controlled by mesoscale circulation features. Central California SST is equally sensitive to wind stress and surface heat flux, but less so to wind stress curl, displaying the greatest sensitivity when upwelling-favorable winds are relaxing and the least sensitivity during the peak of upwelling. SST sensitivity is typically 2–4 times larger during summer than during spring, although larger variations occur during some years. The sensitivity of central coast eddy kinetic energy to surface forcing is constant on average throughout the year. Perturbations in the wind that align with mesoscale eddies to enhance the strength of the circulation by local Ekman pumping yield the greatest sensitivities. The sensitivity of the potential for baroclinic instability is greatest when nearshore horizontal temperature gradients are largest, and it is associated with variations in wind stress concentrated along the core of the California Current. The sensitivity varies by a factor of ∼1.5 throughout the year. A new and important aspect of this work is identification of the complex flow dependence and seasonal dependence of the sensitivity of the ROMS California Current System (CCS) circulation to variations in surface forcing that was hitherto not previously appreciated.

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3